Forecasting Word Model: Twitter-based Influenza Surveillance and Prediction

Hayate ISO, Shoko WAKAMIYA, Eiji ARAMAKI

Twitter for Public health

- Many users tweet when they caught a disease
- # of tweets is in proportion to # of flu patients

Time

Noise included in tweets

Website:

By patients:

By healthy people:

Influencer @not_influenza

For more information about bird flu link

I got a flu... I couldn't do anymore...

I've never caught a flu

I got a flu shot yesterday

Noise included in tweets

Website:

By patients:

Only counts this type of tweets

By healthy people:

Influencer @not influenza

For more information about bird flu link

High Fever @flu_patient

I got a flu... I couldn't do anymore...

Healthy person @organic

I've never caught a flu

Injection lover @prevention

I got a flu shot yesterday

Our lab runs flu surveillance system

5

1 JJN NLP Flu Warning~	
ツイート カレンダー 2016/12/10 🗈	上 データダウンロード
インフルエンザレベルとtweet	
らインフルエンザのニュース見ながら鳥の照り焼き食べてる。 2016-12-11,18:35:11 全国 0.08	
 (CELA(セラ)除菌消臭の水】衣類の除菌・消臭、アレルギー物質の抑制に https:/ エンザ 2016-12-11,18:35:04 山梨県 	//t.co/CsRvdq5L4v #除菌 #消臭 #ペット #ノロウイルス #インフル
喉の痛みを感じたので、明日は病院に行って参ります。('ω')ノ某はマラソン大会が 2016-12-11,18:35:04 全国 0.08	不得手なので、インフルエンザだったらとってもうれしい
烏好きだけど島インフルエンザのニュース見たら無責任に鳥好きとか言えなくなった 2016-12-11,18:35:00 全国 0.08	۲ <u>د</u>
インフルエンザウイルスって、加熱で死ぬの??#鳥インフルエンザ #バンキシャ 2016-12-11,18:34:59 全国 0.08	
	症状レベル: 🕑 0未満 / 😒 0~0.5 / 😝 0.5以上
グラフ 全国 ▼	★ データダウンロード

Aramaki, Eiji, Sachiko Maskawa, and Mizuki Morita. "Twitter catches the flu: detecting influenza epidemics using Twitter." *In Proc of EMNLP 2011*. http://mednlp.jp/influ_map/

Similarity between Tweets and Patients

&センター調べ

Each word has a specific time-lag⁷

What is Forecasting Words?

- Twitter tends to be an early indicator of actual condition
- We observed that each word has a specific time lag with actual condition
- Our objective: more flexible modeling
 - Estimate **time-difference**

-

-

Extend **future forecasting** model

Outline

Data

Time shift: Nowcasting

Outline

Data

Time shift: Nowcasting

Time shift: Forecasting

Training data: Twitter Corpus¹¹

- **Query**: The word **"flu"** in Japanese (INFLU / I-N-FU-RU/)
- **Period**: Aug 2012 ~ Jan 2016

(3 year 5 month)

• Size of corpus: 7.7 Million tweets

Gold standard: IDSC reports

- Infectious Disease Surveillance Center (IDSC) reports # of flu patients once a week
- They gather the number of flu patients during the period of epidemic
- We split IDSC reports into three seasons as follows:
 - Season 1: Dec 1, 2012 ~ May 31, 2013
 - Season 2: Dec 1, 2013 ~ May 31, 2014
 - Season 3: Dec 1, 2014 ~ May 24, 2014

2

Outline

Data

Time shift: Nowcasting

Time shift: Forecasting

Time lag measure: Cross Correlation ¹⁴

 Cross Correlation is used to search for the most suitable time shift width for each word frequency as between # of tweets T days before and # of actual patients

$$r_{\mathbf{x}_{v},\mathbf{y}}(\tau) = \frac{\sum_{t=1}^{T} (x_{v}^{(t-\tau)} - \bar{x}_{v}(\tau))(y^{(t)} - \bar{y})}{\sqrt{\sum_{t=1}^{T} (x_{v}^{(t-\tau)} - \bar{x}_{v}(\tau))^{2} \sum_{t=1}^{T} (y^{(t)} - \bar{y})^{2}}},$$

where
$$ar{x}_v(au) = \sum_{t=1}^T x_v^{(t- au)}/T$$

* The cross correlation is exactly the same as the *Pearson's correlation* when $\mathbf{\tau} = \mathbf{0}$.

• Cross Correlation *r*:

$$r_{\mathrm{x}_v,\mathrm{y}}(au) = rac{\sum\limits_{t=1}^T (x_v^{(t- au)} - ar{x}_v(au))(y^{(t)} - ar{y})}{\sqrt{\sum\limits_{t=1}^T (x_v^{(t- au)} - ar{x}_v(au))^2 \sum\limits_{t=1}^T (y^{(t)} - ar{y})^2}},$$

• When τ = 0, *r* is 0.75 B/T tweet and IDSC reports

• Cross Correlation *r*:

$$r_{\mathrm{x}_v,\mathrm{y}}(au) = rac{\sum\limits_{t=1}^T (x_v^{(t- au)} - ar{x}_v(au))(y^{(t)} - ar{y})}{\sqrt{\sum\limits_{t=1}^T (x_v^{(t- au)} - ar{x}_v(au))^2 \sum\limits_{t=1}^T (y^{(t)} - ar{y})^2}},$$

• When τ increases, word counts moves to right side:

• Cross Correlation *r*:

$$r_{\mathrm{x}_v,\mathrm{y}}(au) = rac{\sum\limits_{t=1}^T (x_v^{(t- au)} - ar{x}_v(au))(y^{(t)} - ar{y})}{\sqrt{\sum\limits_{t=1}^T (x_v^{(t- au)} - ar{x}_v(au))^2 \sum\limits_{t=1}^T (y^{(t)} - ar{y})^2}},$$

• When τ = 16, *r* is 0.95 B/T tweet and IDSC reports

Estimate optimal time-lag

We define optimal time-lag τ̂ by maximizing the cross correlation

 $\hat{\tau}_v = rg\max r_{x_v,y}(\tau)$

18

Heatmap representation of Matrix ¹⁹

Effectiveness of time shift

- Regression for <u>nowcasting</u> with applying time-shift or not:
 - Lasso (Tibshirani, 1994)
 - Elastic-Net (Zou and Hastie, 2005)
- The searching range of time shift τ is in [0, ..., 60]

	Train	Season 2	Season 3	Season 1	Season 3	Season 1	Season 2		
	Test	Season 1		Season 2		Season 3		Avg.	
e-shift	Lasso+	0.952	0.907	0.951	0.888	0.955	0.963	0.936	
time	ENet+	0.944	0.898	0.960	0.878	0.967	0.959	0.934	
-shift	Lasso	0.854	0.916	0.768	0.894	0.770	0.753	0.825	
time	ENet	0.900	0.927	0.809	0.914	0.792	0.805	0.858	

※ Higher is better

Outline

Data

Time shift: Nowcasting

Time shift: Forecasting

Limitation

- To estimate specific day of the **epidemic** through Twitter, we need to gather **same day's tweet**
- How to predict *future disease outbreaking*?

Time

Restrict time shift estimation²³

• In order to forecast Δt days future epidemics,

we restrict searching interval of time shift at least Δt days

• Nowcasting case: $\tau \in [0, \tau_{max}]$

• Forecasting case (10 days future): $\tau \in [10, \tau_{max}]$

• Forecasting case (30 days future): $\tau \in [30, \tau_{max}]$

• Forecasting case (30 days future): $\tau \in [30, \tau_{max}]$

Forecasting Modeling

- In each Δt , we search optimal time shift for all words.
- Estimate model by Lasso & ENet using these features.

Our model beyonds baseline ²⁹

Summary

- We discovered the time difference between twitter and actual phenomena.
- We proposed but handling such difference to improve the nowcasting performance and extend for forecasting model.
- Our method is widely applicable for other time series data which has time-lag between response and predictors.

Code and Data available at http://sociocom.jp/~iso/forecastword