
Fact-based Text Editing
Hayate Iso, Chao Qiao, Hang Li

The status quo of Text Editing

2

x = “This is the worst game!” y = “This is the best game!”
Style Transfer

x = “Last year, I read the book that is
authored by Jane” y = “Jane wrote a book. I read it last year”

Simplification

x = “Fish firming uses the lots of specials” y = “Fish firming uses a lot of specials”

Grammatical
Error Correction

‣ Model, p(y | x), learns how to edit the input, x into the desired output, y.

What is Fact-based Text Editing?

• The goal of fact-based text editing
is to revise a given document to
better describe the facts in a
knowledge base.

• e.g., several triples

3

Fact-based Text Editing

Hayate Iso†⇤ Chao Qiao‡ Hang Li‡
†Nara Institute of Science and Technology ‡ByteDance AI Lab

hyate.iso@gmail.com, {qiaochao, lihang.lh}@bytedance.com

Abstract

We propose a novel text editing task, referred
to as fact-based text editing, in which the goal
is to revise a given document to better de-
scribe the facts in a knowledge base (e.g., sev-
eral triples). The task is important in practice
because reflecting the truth is a common re-
quirement in text editing. First, we propose a
method for automatically generating a dataset
for research on fact-based text editing, where
each instance consists of a draft text, a revised
text, and several facts represented in triples.
We apply the method into two public table-
to-text datasets, obtaining two new datasets
consisting of 233k and 37k instances, respec-
tively. Next, we propose a new neural network
architecture for fact-based text editing, called
FACTEDITOR, which edits a draft text by re-
ferring to given facts using a buffer, a stream,
and a memory. A straightforward approach to
address the problem would be to employ an
encoder-decoder model. Our experimental re-
sults on the two datasets show that FACTE-
DITOR outperforms the encoder-decoder ap-
proach in terms of fidelity and fluency. The
results also show that FACTEDITOR conducts
inference faster than the encoder-decoder ap-
proach.

1 Introduction

Automatic editing of text by computer is an impor-
tant application, which can help human writers to
write better documents in terms of accuracy, flu-
ency, etc. The task is easier and more practical than
the automatic generation of texts from scratch and
is attracting attention recently (Yang et al., 2017;
Yin et al., 2019). In this paper, we consider a new
and specific setting of it, referred to as fact-based
text editing, in which a draft text and several facts
(represented in triples) are given, and the system

⇤ The work was done when Hayate Iso was a research
intern at ByteDance AI Lab.

Set of triples
{(Baymax, creator, Douncan Rouleau),

(Douncan Rouleau, nationality, American),
(Baymax, creator, Steven T. Seagle),
(Steven T. Seagle, nationality, American),
(Baymax, series, Big Hero 6),
(Big Hero 6, starring, Scott Adsit)}

Draft text
Baymax was created by Duncan Rouleau, a winner of
Eagle Award. Baymax is a character in Big Hero 6 .

Revised text
Baymax was created by American creators
Duncan Rouleau and Steven T. Seagle . Baymax is
a character in Big Hero 6 which stars Scott Adsit .

Table 1: Example of fact-based text editing. Facts are
represented in triples. The facts in green appear in
both draft text and triples. The facts in orange are
present in the draft text, but absent from the triples.
The facts in blue do not appear in the draft text, but
in the triples. The task of fact-based text editing is to
edit the draft text on the basis of the triples, by deleting
unsupported facts and inserting missing facts while
retaining supported facts.

aims to revise the text by adding missing facts and
deleting unsupported facts. Table 1 gives an exam-
ple of the task.

As far as we know, no previous work did address
the problem. In a text-to-text generation, given a
text, the system automatically creates another text,
where the new text can be a text in another language
(machine translation), a summary of the original
text (summarization), or a text in better form (text
editing). In a table-to-text generation, given a table
containing facts in triples, the system automatically
composes a text, which describes the facts. The
former is a text-to-text problem, and the latter a
table-to-text problem. In comparison, fact-based
text editing can be viewed as a ‘text&table-to-text’
problem.

Overview of this research
• Data Creation:

• We have proposed a data construction method for fact-based text editing and
created two datasets.

• Fact-based Text Editing model:

• We have proposed a model for fact-based text editing, which performs the task
by generating a sequence of actions, instead of words.

4

• For all of table-to-text pairs in the training data, we create the template
by factual masking.

Data Creation:Factual Masking

5

Τ = {(Baymax, voice, Scott_Adsit)}
x = “Scott_Adsit does the voice for Baymax”

Τ’ = {(AGENT-1, voice, PATIENT-1)}
x’ = “PATIENT-1 does the voice for AGENT-1”

Masking

x’

Storing

Set of templates for T’

Set of templates for
{(AGENT-1, occupation, PATIENT-3),
 (AGENT-1, was_a_crew_member_of, BRIDGE-1)}

Data Creation: Retrieve LCS matched template

6

Τ’ = {(AGENT-1, occupation, PATIENT-3),
 (AGENT-1, was_a_crew_member_of, BRIDGE-1),
 (BRIDGE-1, operator, PATIENT-2)}

y’ = AGENT-1 performed as PATIENT-3 on BRIDGE-1 mission
 that was operated by PATIENT-2.

x’ = AGENT-1 served as PATIENT-3 was a crew member of the BRIDGE-1 mission.

Retrieve

^

Data Creation: Token Alignment

7

y’ = AGENT-1 performed as PATIENT-3 on BRIDGE-1 mission that was operated by PATIENT-2 .

x’ = AGENT-1 served as PATIENT-3 was a crew member of the BRIDGE-1 mission .^

To delete

Data Creation: Delete Substring

8

y’ = AGENT-1 performed as PATIENT-3 on BRIDGE-1 mission that was operated by PATIENT-2 .

x’ = AGENT-1 served as PATIENT-3 was a crew member of the BRIDGE-1 mission .^

x’ = AGENT-1 performed as PATIENT-3 on BRIDGE-1 mission.

x’ = AGENT-1 performed as PATIENT-3 on BRIDGE-1 mission that was operated by PATIENT-2 .

To delete

Keep Keep Delete

Data Creation: Fact Unmasking

9

x’ = AGENT-1 performed as PATIENT-3 on BRIDGE-1 mission.

x =Alan_Bean performed as Test_pilot on Apollo_12 mission.

Unmask

• Recovering the factual information by original facts, Τ.

Τ = {(Alan_Bean, occupation, Test_pilot),
 (Alan_Bean, was a crew member of, Apollo_12),
 (Apollo_12, operator, NASA)}

y =Alan_Bean performed as Test_pilot on Apollo_12 mission that was operated by NASA.

Τ = {(Alan_Bean, occupation, Test_pilot), (Alan_Bean, was a crew member of, Apollo_12),
 (Apollo_12, operator, NASA)}

x =Alan_Bean performed as Test_pilot on Apollo_12 mission.

Fact-based Text Editing instance

Data Creation: Statistics

10

setting. Note that the process of data creation is
reverse to that of text editing.

Given a pair of T 0 and y0, our method retrieves
another pair denoted as T̂ 0 and x̂0, such that y0 and
x̂0 have the longest common subsequences. We
refer to x̂0 as a reference template. There are two
possibilities; T̂

0 is a subset or a superset of T
0.

(We ignore the case in which they are identical.)
Our method then manages to change y0 to a draft
template denoted as x0 on the basis of the relation
between T

0 and T̂
0. If T̂

0 (T
0, then the draft

template x0 created is for insertion, and if T̂ 0) T
0,

then the draft template x0 created is for deletion.
For insertion, the revised template y0 and the

reference template x̂0 share subsequences, and the
set of triples T \T̂ appear in y0 but not in x̂0. Our
method keeps the shared subsequences in y0, re-
moves the subsequences in y0 about T \T̂ , and
copies the rest of words in y0, to create the draft
template x0. Table 2a gives an example. The shared
subsequences “AGENT-1 performed as PATIENT-
3 on BRIDGE-1 mission” are kept. The set of
triple templates T \T̂ is {(BRIDGE-1, operator,
PATIENT-2)}. The subsequence “that was oper-
ated by PATIENT-2” is removed. Note that the
subsequence “served” is not copied because it is
not shared by y0 and x̂0.

For deletion, the revised template y0 and the
reference template x̂0 share subsequences. The
set of triples T̂ \T appear in x̂0 but not in y0.
Our method retains the shared subsequences in
y0, copies the subsequences in x̂0 about T̂ \T ,
and copies the rest of words in y0, to create
the draft template x0. Table 2b gives an exam-
ple. The subsequences “AGENT-1 was created by
BRIDGE-1 and PATIENT-2” are retained. The
set of triple templates T̂ \T is {(AGENT-1, full-
Name, PATIENT-1)}. The subsequence “whose
full name is PATIENT-1” is copied. Note that the
subsequence “the character of” is not copied be-
cause it is not shared by y0 and x̂0.

After getting the draft template x0, our method
lexicalizes it to obtain a draft text x, where the
lexicons (entity words) are collected from the cor-
responding revised text y.

We obtain two datasets with our method, referred
to as WEBEDIT and ROTOEDIT, respectively. Ta-
ble 3 gives the statistics of the datasets.

In the WEBEDIT data, sometimes entities only
appear in the subj’s of triples. In such cases, we
also make them appear in the obj’s. To do so, we

WEBEDIT ROTOEDIT

TRAIN VALID TEST TRAIN VALID TEST

#D 181k 23k 29k 27k 5.3k 4.9k
#Wd 4.1M 495k 624k 4.7M 904k 839k
#Wr 4.2M 525k 649k 5.6M 1.1M 1.0M
#S 403k 49k 62k 209k 40k 36k

Table 3: Statistics of WEBEDIT and ROTOEDIT, where
#D is the number of instances, #Wd and #Wr are the to-
tal numbers of words in the draft texts and the revised
texts, respectively, and #S is total the number of sen-
tences.

introduce an additional triple (ROOT, IsOf, subj)
for each subj, where ROOT is a dummy entity.

4 FACTEDITOR

In this section, we describe our proposed model for
fact-based text editing referred to as FACTEDITOR.

4.1 Model Architecture
FACTEDITOR transforms a draft text into a revised
text based on given triples. The model consists
of three components, a buffer for storing the draft
text and its representations, a stream for storing the
revised text and its representations, and a memory
for storing the triples and their representations, as
shown in Figure 1.

FACTEDITOR scans the text in the buffer, copies
the parts of text from the buffer into the stream
if they are described in the triples in the mem-
ory, deletes the parts of the text if they are not
mentioned in the triples, and inserts new parts of
next into the stream which is only presented in the
triples.

The architecture of FACTEDITOR is inspired by
those in sentence parsing Dyer et al. (2015); Watan-
abe and Sumita (2015). The actual processing of
FACTEDITOR is to generate a sequence of words
into the stream from the given sequence of words
in the buffer and the set of triples in the memory.
A neural network is employed to control the entire
editing process.

4.2 Neural Network
Initialization
FACTEDITOR first initializes the representations of
content in the buffer, stream, and memory.

There is a feed-forward network associated with
the memory, utilized to create the embeddings of
triples. Let M denote the number of triples. The

• We applied our data creation method for two publicly available datasets,
WebNLG (Gardent et al., 2017) and RotoWire (Wiseman et al., 2017), to create fact-
based text editing datasets, WebEdit and RotoEdit.

https://github.com/isomap/factedit

https://github.com/isomap/factedit

How to model the Fact-based Text Editing?
• A natural choice is an encoder-decoder model with attention & copy

to generate the revised text from scratch.

✘ Unnecessary word replacement could happen.

✘ Inefficient for the long input & output.

11

Table Encoder Text Encoder Decoder

yxT

Attention & Copy

Approach: Editing through Tagging
• Instead of generating words from scratch, the model just predicts predefined actions.

✓Model only focuses on the explicit editing

✓ Robust to the length of input & output

12

Draft text x Bakewell pudding is Dessert that can be served Warm or cold .

Revised text y Bakewell pudding is Dessert that originates from Derbyshire Dales .

Action sequence a
Keep Keep Keep Keep Gen(originates) Gen(from) Gen(Derbyshire Dales)
Drop Drop Drop Drop Keep

Table 4: An example of action sequence derived from a draft text and revised text.

combination of the context vector of triples t̃t
and the linearly projected embedding of word w
into the stream, as shown in Fig. 1c. The state
of stream is updated with the LSTM as st+1 =
LSTM([̃tt;W pyt], st), where yt is the embed-
ding of the generated word yt and W p denotes
parameters. In addition, FACTEDITOR copies the
generated word yt into the stream.

FACTEDITOR continues the actions until the
buffer becomes empty.

Word generation
FACTEDITOR generates a word yt at time t, when
the action is Gen,

Pgen(yt | zt) = softmax(W y · zt)

where W y is parameters.
To avoid generation of OOV words, FACTEDI-

TOR exploits the copy mechanism. It calculates the
probability of copying the object of triple tj

Pcopy(oj | zt) / exp (v>
c · tanh(W c · [zt; tj]))

where vc and W c denote parameters, and oj is the
object of triple tj . It also calculates the probability
of gating

pgate = sigmoid(w>
g
· zt + bg)

where wg and bg are parameters. Finally, it cal-
culates the probability of generating a word wt

through either generation or copying,

P (yt | zt) = pgatePgen(yt | zt)

+ (1� pgate)
MX

j=1:oj=yt

Pcopy(oj | zt),

where it is assumed that the triples in the memory
have the same subject and thus only objects need
to be copied.

4.3 Model Learning
The conditional probability of sequence of actions
a = (a1, a2, · · · , aT) given the set of triples T and

the sequence of input words x can be written as

P (a | T ,x) =
TY

t=1

P (at | zt)

where P (at | zt) is the conditional probability of
action at given state zt at time t and T denotes the
number of actions.

The conditional probability of sequence of gen-
erated words y = (y1, y2, · · · , yT) given the se-
quence of actions a can be written as

P (y | a) =
TY

t=1

P (yt | at)

where P (yt | at) is the conditional probability of
generated word yt given action at at time t, which
is calculated as

P (yt | at) =

(
P (yt | zt) if at = Gen

1 otherwise

Note that not all positions have a generated word.
In such a case, yt is simply a null word.

The learning of the model is carried out via super-
vised learning. The objective of learning is to min-
imize the negative log-likelihood of P (a | T ,x)
and P (y | a)

L(✓) = �

TX

t=1

{logP (at | zt) + logP (yt | at)}

where ✓ denotes the parameters.
A training instance consists of a pair of draft

text and revised text, as well as a set of triples,
denoted as x, y, and T respectively. For each
instance, our method derives a sequence of actions
denoted as a, in a similar way as that in (Dong
et al., 2019). It first finds the longest common sub-
sequence between x and y, and then selects an
action of Keep, Drop, or Gen at each position,
according to how y is obtained from x and T (cf.,
Tab. 4). Action Gen is preferred over action Drop
when both are valid.

A running example: Keep

13

Stream Buffer

Bakewell_pudding

is Dessert

that
can

be served
Warm_or_Cold

.

Triples
(Bakewell_pudding, region, Derbyshire_Dales)

(Bakewell_pudding, course, Dessert){ }

Keep

Bakewell_pudding

is Dessert

that
can

be served
Warm_or_Cold

.

Triples
(Bakewell_pudding, region, Derbyshire_Dales)

(Bakewell_pudding, course, Dessert){ }

popStream Bufferpush

that

A running example: Keep

14

Stream Buffer

is Dessert

that
can

be served
Warm_or_Cold

.

Triples
(Bakewell_pudding, region, Derbyshire_Dales)

(Bakewell_pudding, course, Dessert){ }

Gen(originates)

…

A running example: Gen

15

is
Dessert

can
be served

Warm_or_Cold

.

Triples
(Bakewell_pudding, region, Derbyshire_Dales)

(Bakewell_pudding, course, Dessert){ }

Stream Bufferpush

that

…

originates

emb

A running example: Gen

16

Stream Buffer

from
can

be served
Warm_or_Cold

originates

Derbyshire_Dales

.

Triples
(Bakewell_pudding, region, Derbyshire_Dales)

(Bakewell_pudding, course, Dessert){ }

Drop

…

A running example: Drop

17

Triples
(Bakewell_pudding, region, Derbyshire_Dales)

(Bakewell_pudding, course, Dessert){ }

popStream Buffer

from
originates

Derbyshire_Dales

…

can
be served

Warm_or_Cold

.

A running example: Drop

18

Experimental Results
• The proposed model, FactEditor, shows generally better performance.

19Further results are in the paper

WebEdit

RotoEdit

Examples

20

Set of triples

{(Ardmore Airport, runwayLength, 1411.0),
(Ardmore Airport, 3rd runway SurfaceType, Poaceae),
(Ardmore Airport, operatingOrganisation, Civil Aviation Authority of New Zealand),
(Ardmore Airport, elevationAboveTheSeaLevel, 34.0),
(Ardmore Airport, runwayName, 03R/21L)}

Draft text
Ardmore Airport , ICAO Location Identifier UTAA . Ardmore Airport 3rd runway
is made of Poaceae and Ardmore Airport . 03R/21L is 1411.0 m long and Ardmore Airport
is 34.0 above sea level .

Revised text
Ardmore Airport is operated by Civil Aviation Authority of New Zealand . Ardmore Airport
3rd runway is made of Poaceae and Ardmore Airport name is 03R/21L . 03R/21L is 1411.0 m long
and Ardmore Airport is 34.0 above sea level .

ENCDECEDITOR

Ardmore Airport , ICAO Location Identifier UTAA , is operated by
Civil Aviation Authority of New Zealand . Ardmore Airport 3rd runway is made of Poaceae and
Ardmore Airport . 03R/21L is 1411.0 m long and Ardmore Airport is 34.0 m long .

FACTEDITOR

Ardmore Airport is operated by Civil Aviation Authority of New Zealand . Ardmore Airport
3rd runway is made of Poaceae and Ardmore Airport . 03R/21L is 1411.0 m long and
Ardmore Airport is 34.0 above sea level .

Table 7: Example of generated revised texts given by ENCDECEDITOR and FACTEDITOR on WEBEDIT. Entities
in green appear in both the set of triples and the draft text. Entities in orange only appear in the draft text. Entities
in blue should appear in the revised text but do not appear in the draft text.

WEBEDIT ROTOEDIT

Table-to-Text 4,083 1,834
Text-to-Text 2,751 581

ENCDECEDITOR 2,487 505
FACTEDITOR 3,295 1,412

Table 8: Runtime analysis (# of words/second). Table-
to-Text always shows the fastest performance (Bold-
faced). FACTEDITOR shows the second fastest runtime
performance (Underlined).

description about an unsupported fact (in orange)
appearing in the draft text. In contrast, FACTEDI-
TOR can deal with the problem well. In addition,
ENCDECEDITOR conducts an unnecessary substi-
tution in the draft text (underlined). FACTEDITOR
tends to avoid such unnecessary editing.

Runtime analysis
We conduct runtime analysis on FACTEDITOR and
the baselines in terms of number of processed
words per second, on both WEBEDIT and RO-
TOEDIT. Table 8 gives the results when the batch
size is 128 for all methods. Table-to-Text is the
fastest, followed by FACTEDITOR. FACTEDITOR
is always faster than ENCDECEDITOR, apparently
because it has a lower time complexity, as ex-
plained in Section 4. The texts in WEBEDIT are rel-
atively short, and thus FACTEDITOR and ENCDE-
CEDITOR have similar runtime speeds. In contrast,
the texts in ROTOEDIT are relatively long, and thus
FACTEDITOR executes approximately two times
faster than ENCDECEDITOR.

6 Conclusion
In this paper, we have defined a new task referred
to as fact-based text editing and made two contri-
butions to research on the problem. First, we have
proposed a data construction method for fact-based
text editing and created two datasets. Second, we
have proposed a model for fact-based text editing,
named FACTEDITOR, which performs the task by
generating a sequence of actions. Experimental
results show that the proposed model FACTEDI-
TOR performs better and faster than the baselines,
including an encoder-decoder model.

Acknowledgments
We would like to thank the reviewers for their in-
sightful comments.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In International
Conference on Learning Representations.

Denny Britz, Melody Guan, and Minh-Thang Luong.
2017. Efficient Attention using a Fixed-Size Mem-
ory Representation. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 392–400, Copenhagen, Denmark.
Association for Computational Linguistics.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learn-
ing Phrase Representations using RNN Encoder–
Decoder for Statistical Machine Translation. In

EncDecEditor FactEditor

Fluency ☺ ☺
Adequecy ☹ ☺

Unnecessary
paraphrasing ☹ ☺

Runtime analysis
• FactEditor shows the 2nd fastest inference performance.

• It processes three times faster than EncDecEditor on RotoEdit dataset.

21

Set of triples

{(Ardmore Airport, runwayLength, 1411.0),
(Ardmore Airport, 3rd runway SurfaceType, Poaceae),
(Ardmore Airport, operatingOrganisation, Civil Aviation Authority of New Zealand),
(Ardmore Airport, elevationAboveTheSeaLevel, 34.0),
(Ardmore Airport, runwayName, 03R/21L)}

Draft text
Ardmore Airport , ICAO Location Identifier UTAA . Ardmore Airport 3rd runway
is made of Poaceae and Ardmore Airport . 03R/21L is 1411.0 m long and Ardmore Airport
is 34.0 above sea level .

Revised text
Ardmore Airport is operated by Civil Aviation Authority of New Zealand . Ardmore Airport
3rd runway is made of Poaceae and Ardmore Airport name is 03R/21L . 03R/21L is 1411.0 m long
and Ardmore Airport is 34.0 above sea level .

ENCDECEDITOR

Ardmore Airport , ICAO Location Identifier UTAA , is operated by
Civil Aviation Authority of New Zealand . Ardmore Airport 3rd runway is made of Poaceae and
Ardmore Airport . 03R/21L is 1411.0 m long and Ardmore Airport is 34.0 m long .

FACTEDITOR

Ardmore Airport is operated by Civil Aviation Authority of New Zealand . Ardmore Airport
3rd runway is made of Poaceae and Ardmore Airport . 03R/21L is 1411.0 m long and
Ardmore Airport is 34.0 above sea level .

Table 7: Example of generated revised texts given by ENCDECEDITOR and FACTEDITOR on WEBEDIT. Entities
in green appear in both the set of triples and the draft text. Entities in orange only appear in the draft text. Entities
in blue should appear in the revised text but do not appear in the draft text.

WEBEDIT ROTOEDIT

Table-to-Text 4,083 1,834
Text-to-Text 2,751 581

ENCDECEDITOR 2,487 505
FACTEDITOR 3,295 1,412

Table 8: Runtime analysis (# of words/second). Table-
to-Text always shows the fastest performance (Bold-
faced). FACTEDITOR shows the second fastest runtime
performance (Underlined).

description about an unsupported fact (in orange)
appearing in the draft text. In contrast, FACTEDI-
TOR can deal with the problem well. In addition,
ENCDECEDITOR conducts an unnecessary substi-
tution in the draft text (underlined). FACTEDITOR
tends to avoid such unnecessary editing.

Runtime analysis
We conduct runtime analysis on FACTEDITOR and
the baselines in terms of number of processed
words per second, on both WEBEDIT and RO-
TOEDIT. Table 8 gives the results when the batch
size is 128 for all methods. Table-to-Text is the
fastest, followed by FACTEDITOR. FACTEDITOR
is always faster than ENCDECEDITOR, apparently
because it has a lower time complexity, as ex-
plained in Section 4. The texts in WEBEDIT are rel-
atively short, and thus FACTEDITOR and ENCDE-
CEDITOR have similar runtime speeds. In contrast,
the texts in ROTOEDIT are relatively long, and thus
FACTEDITOR executes approximately two times
faster than ENCDECEDITOR.

6 Conclusion
In this paper, we have defined a new task referred
to as fact-based text editing and made two contri-
butions to research on the problem. First, we have
proposed a data construction method for fact-based
text editing and created two datasets. Second, we
have proposed a model for fact-based text editing,
named FACTEDITOR, which performs the task by
generating a sequence of actions. Experimental
results show that the proposed model FACTEDI-
TOR performs better and faster than the baselines,
including an encoder-decoder model.

Acknowledgments
We would like to thank the reviewers for their in-
sightful comments.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In International
Conference on Learning Representations.

Denny Britz, Melody Guan, and Minh-Thang Luong.
2017. Efficient Attention using a Fixed-Size Mem-
ory Representation. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 392–400, Copenhagen, Denmark.
Association for Computational Linguistics.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learn-
ing Phrase Representations using RNN Encoder–
Decoder for Statistical Machine Translation. In

Summary
• We introduced the new task, Fact-based Text Editing.

• We have proposed a data construction method for fact-based text editing and
created two datasets.

• We have proposed a model for fact-based text editing, which performs the task by
generating a sequence of actions.

22

Code & Data available at https://github.com/isomap/factedit

https://github.com/isomap/factedit

